Off-line Calibration/Monitoring

List of tasks

Calibration

- Calorimeter level energy scale
 - -> Initial calibration with test-beam, source, etc
 - -> in-situ (isolated particles, gamma/Z+jet, mass(jj)
 - -> jets/MET energy scale

Monitoring

- -> synchronization
- -> dead/hot channels
- -> radiation damage

Software tools and data maintenance

- -> bookkeeping
- -> ORCA-DB interface

- -> Jet / Missing ET energy scale
 - 1. Jet energy correction (Erec/Egen)-recursive line.
 - A. Silvia like: Egen is fixed mean value of Erec.
 - B. Andrei like: Erec fixed mean Egen.

for low and high luminosity and different jet finders

- Andrei Krokhotine on–going task
- 2. Development of jet correction with readout weights done

 (CMS NOTE 2002/023)

 Irina Vardanian Olga Kodolova Alexei Oulianov

Irina Vardanian, Olga Kodolova, Alexei Oulianov, S.Kunori

Resume: no gain in comparison with more simple corrections in (1).

3. Dependance of resolution on cone size with/without pile-up.
in progress

Irina Vardanian, Olga Kodolova, Alexei Oulianov

Gamma/Z + jet channel CMS NOTE in preparation.

- 5. Production of gamma+jet and Z+jet for calibration Igor Lokhtin, V.Konopliannikov, E.Tikhonenko, V. Kolosov, O.Kodolova, N.Kruglov, N.Lvova-production.
- 6. Evaluation of backgrounds for gamma+jet with CMSIM IN2002/014
 - V.Konopliannikov, E.Tikhonenko, V.Palichik, O.Kodolova with low luminosity pile up with ORCA— Internal Note submitted
- 7. Evaluation of systematical errors for gamma+jet calibration Internal Note – submitted V.Konopliannikov, A.Urkinbaev, O.Kodolova
- 8. The possibility of calibration with gamma+jet channel Internal Note submitted V.Konopliannikov, A.Urkinbaev, O.Kodolova
- 9. The rates for gamma+jet channel included in DAQ TDR A. Oulianov

- 9. Jet corrections at high luminosity and heavy ions to be done (need to check jet finder with pile–up subtraction)
 A. Oulianov, A.Krokhotine, I.Vardanian, O.Kodolova
- 10. Using tracker information for jet energy corrections
 D.Green, I.Vardanian, O.Kodolova
 with Physics Objects group (A.Nikitenko)
 methodology and algorithm
 CMS NOTE submitted
 N.Ilyina application to H–tau tau channel to be done
- 11. Implementation jet corrections with tracker in ORCA. Common frame for object – O.Kodolova Trackfinding (global, regional, partial etc) – L.Fano Calorimeter object (cluster around entry point) – B. Van de Vivier Library of responses for single particles using tracker information – I.Vardanian The rate of isolated particles – S.Petrouchanko
 - 12. Support jet energy correction algorithms in ORCA A.Oulianov

- 12. How to use mean Et in eta (pile up and HIC) in calibration S.Petrouchanko, K. Teplov
- 13. Mass (jj) for W from top decay Suman Bala

14. Trigger requirements and fast off—line event selectionsfor all in—situ calibration samples

Evaluating the numbers of events/per month (?) at low and high luminosity – ?

isolated paticles – S.Petrouchanko gamma/Z+jet – A.Oulianov, V.Konopliannikov, A.Urkinbaev W->jj from top– decay – Suman Bala (?)

Z->jj

- -> Radiation damages, monitoring and recalibration
- 15. Simulation of radiation damages in HE scitillating tiles.
 A.Krokhotine, V.Palichik, V.Gavrilov, V.Kryshkin, I.Golutvin,
 O.Kodolova (CMS NOTE 2002/013)
- 16. Basing on the results of the fiber radiation damage measurements simulate the suggested scenario of the HF recalibration with the source simultaneously with the control measurements by the LED/laser system (Erchov, Gribushin) NOTE in preparation
- 17. Using M.–C. simulation of the HF operation determine the method of the calibration constant correction for two variants: permanent correction at the on–line operation (for the using of HF in the trigger) and long–term precision correction for off–line data processing (Erchov, Gribushin)
- 18. investigate possibility to use neutron monitors for the permanent monitoring of HF operation (Erchov, Gribushin)
- 19. Non-instrumental gaps in HF, influence on the calibration V.Kolosov

candidates

- DCS -- PRS -**Calibration** A.Gribushin P.DeBarbaro Calorimeter level energy scale H.Budd **V.Bernes** initial calibration: test beam+source verify QC during HCAL construction I. Vardanyan Object level energy scale (Jet/Met) A.Kokhotine P.Hidas Simple /use of tracks/In-situ/pileup V.Konnopianikov **Monitoring** A.Yershov V.Hagopian Synchronization A.Krokhotine **K.Teplov** Gain change, Dead/sick channels A.Krokhotine Radiation damage **Software tools** A.Oulianov Database T.Kramer Interface S.Abdullin DSC/DAQ-DB interface *ORCA–DB* interface Need more names, Esp. from HB/HO

Data Collection and maintenance

Nearest future task:

Establish organization and connection with DCS

Participate in DCS group activity:

Verify QC during HCAL construction – collect all source data, analyze and put them in DB – on going

HB/HF test-beam in 2002: the data with beam and source

Software simulation and reconstruction with "HCAL in ORCA" group

Interface in ORCA for calibration data – off–line calibration database Alexei Oulianov

Plan to measure radiation damages in tiles (in Kharkov)

Determine recalibration methodology.

Evaluate numbers per tower and per month (?).

- 1. Determine the number of isolated partciles for low and high luminosity e/pi ratio for different energy, mean response in maximal tower (|eta|<2.4)
- 2. Determine the number of isolated muons for low and high luminosity. error in MIP signal
- 3. Determine the mean response from pile-up.
- 4. Determine the mean response for gamma/Z+jet for maximal tower of jet

Include radiation damages for HE/HF

Repeat items 1)–4)

Find correction factor from maximal tower.

17. Interface in ORCA for calibration data – off–line calibration database Alexei Oulianov